```
}
/// <summary>
/// Sets the language for the Preview Editor (Toolba
/// </summary>
public String Language ( set; get; )
public IntPtr Handle ( set; get; )
```


Photovoltaic System Design Software

Professional Software for the Design, Simulation and Optimization of PV Systems

Paul DeKleermaeker – N. American General Manager Valentin Software, Inc.

ListLabelObj.Dispose(),
PrintSingleton = zero;

Agenda

- Company Overview
- Products Offered
- The PV*SOL Model

/// <summary>
/// Sets the language for the Preview Editor (Toolba)
/// </summary>

// //summary/ ublic String Language (set; get;

PreviewNotRTF = true; public IntPtr Handle { set; get;

t(); /// <summ

Company Overview

- Development of Design, Simulation and Modeling Software tools for Photovoltaic and Solar Heating Systems
- Established 1988
- 50 employees (of which over 50% are engineers and developers)

Global Headquarters:

Dr. Valentin EnergieSoftware GmbH Berlin, Germany www.valentin.de

North American Headquarters:

Valentin Software, Inc.
Carlsbad, CA (San Diego area)
www.valentin-software.com
info@valentin-software.com

gleton = zero;

Our Team

Agenda

- Company Overview
- Products Offered
 - Standard Products
 - Company Specific Applications
- The PV*SOL Model

Business Areas

- Standard Software packaged solutions
- Development of Company Specific Applications
 — customized solutions

Standard Software Families

A dynamic simulation program for the professional design and calculation of photovoltaic systems, including grid-connected, off-grid and battery backed-up systems.

A dynamic simulation program for the design and optimization of solar thermal systems, for applications including space heating, domestic hot water, pools and industrial usage.

Different Levels of Software for Different Levels of Users

- Expert version
- Professional version
- basic version
- Online calculator

PV*SOL basic

Residential and commercial gridconnected systems, up to 1,000 modules

Automatic inverter selection and configuration

Roof layout

Incentive rates and energy tariffs

Wire size calculation and losses

PV*SOL Pro

Residential, commercial and power plant systems up to approx. 100MWp

Grid-connected and off-grid

2D shade analysis

PV*SOL Expert

3D Visualization plus all the capabilities and features of PV*SOL Pro


```
get ( return m_DesignTemplate; )
// <summary>
/// Fill the variables
/// </summary>
/// <returns></returns>
/// <summary>
/// <sts the language for the Preview Editor (Toolbar)
/// </summary>
public string PreviewPrint()

ReadXML();
IsPreviewNotRTF = true;
String sz = GetLLFile();
/// Summary>
public IntPtr Handle ( set; get; )
```


PhotoPlan

PhotoPlan Output

Company Specific Applications

Customized Programs based on T*SOL express or PV*SOL basic

- Individual look
- Specific Components
- Design
- Parts List
- End-user Proposals

Input

- Location for Meteorological Data
- Consumption Profile
- Module Modeling
- Inverter Modeling
- Array Layout
- Losses
- Tariffs

Output

- Energy Balance
- Final Yield
- Efficiency
- Detailed System Data
- Array Layout
- Economic Payback
- Return on Investment

Developed for wide Market Acceptance

- •Robust, proven, stable customers in over 70 countries, over 70% of installed systems in Germany in 2009 were designed and modeled using PV*SOL.
- Developed for designers, installers, project engineers and developers
- Easy to use: Design assistants, intuitive interface and design flow

Roof Parameters and Row Spacing

Agenda

- Company Overview
- ProductsOffered
- PV*SOL Model

```
/// <summary>
/// Sets the language for the Preview Editor (Toolbe
/// </summary>
public String Language ( set; get; )
public IntPtr Handle ( set; get; )
```


PV*SOL Model

Module Model

- Incident Angle Modifier for reflection
- Module Efficiency Curve for MPP
 - Calculated for all irradiation levels, requires additional partial load operation point
- Complete IV-characteristics for non-MPP operation points
- Efficiency and IV-curves are module temperature corrected
 - 3 temperature coefficients: voltage, current, MPP
- Linear or dynamic temperature model options

```
get { return m_besignTemplate; }
}
/// <summary>
/// Sets the language for the Preview Editor (Toolba
/// </summary>
public String Language { set; get; }
public IntPtr Handle { set; get; }
```


PV*SOL Model

Module Technologies

- cSi, aSi, CdTe, CIS, HIT, µc-Si, Ribbon
- Models each technology's unique characteristics
- Standard data sets for each technology

```
|
|// <summary>
/// Sets the language for the Preview Editor (Toolbe
/// </summary>
public String Language ( set; get; )
public IntPtr Handle ( set; get; )
```


PV*SOL Model

Inverter Model

- · Inverter profile and efficiency curve
- Voltage dependent correction
- Ability to model multiple inverters (quantity and type)

Configuration and Automatic Inverter Optimization

- One inverter for multiple sub-arrays with different sizes, modules and orientations
- Multiple types of inverters in one system
- · Automatic selection of appropriate configurations
- Automatic inverter sizing and selection

Simulation Frequency

- In hourly increments
- Shade calculated in 10-minute intervals

Diverse Flexibility in Array Design: Mix Technologies, Orientation & Configurations

Inverter Selection: 1 Inverter, 4 Arrays

Inverter Selection: Multiple and Different Inverters allowed

System Check before Simulation

PV*SOL Model - Climate

Weather Data Source

 MeteoSyn, Meteonorm, TMY3, SWERA, PVGIS, NASA-SSE, user import and create

Irradiance Model

- Hay and Davies model
- Albedo monthly

```
}
/// <summary>
/// Sets the language for the Preview Editor (Toolba
/// </summary>
public String Language { set; get; }

public IntPtr Handle { set; get; }
```


PV*SOL Model - Shading

Shading

- Horizon based
 - user-defined or imported
- 3D Model
 - Area based
 - Models near and horizon shade in 10 minute intervals
 - Calculates impact per string of cells within each module

PV*SOL Expert 3D Visualization

Shade Analysis and Degradation

String Optimization


```
/// <summary>
/// Sets the language for the Preview Editor (Toolba
/// </summary>
public String Language ( set; get; )

public IntPtr Handle ( set; get; )
```


PV*SOL Model - Losses

Losses & Derate Parameters

- Module mismatch, diodes & module quality
- Wiring calculated from cable data
- Deviation from standard spectrum
- Soiling

```
get { re
/// <summary>
    /// Fill the variables
/// </returns></returns>
/// <returns></returns>
/// <returns></returns
/// <returns>
/// <returns

ReadXML();
IspreviewNotRTF = true;
String sz = GetLLFile();</pre>
```


PV*SOL Model – Financial Analysis

System Financials

- Economic efficiency and cash-flow analysis
- User defined complex tariffs and incentives
- Loans

User Defined Tariff Rates


```
/// <summary>
/// Sets the language for the Preview Editor (Toolbow)// </summary>
public String Language ( set; get; )
public IntPtr Handle ( set; get; )
```


PV*SOL Model – Project Results

Report

- Location, climate data, equipment, load, array, inverter, production, loses
- Array layout
- 3D Views or photo realistic
- Financial Analysis

Output options

- Graphical
- Table format
- Export, copy/paste
- .pdf

Output Options

Detailed Reporting Options

/// summary>
/// Sets the language for the Preview Editor (Toolba
/// //summary>
public String Language (set; get;)
public IntPtr Handle (set; get;)

PV*SOL Model - Databases

Component

- Over 5,000 modules
- Over 1,200 inverters
- User can create or modify
- Automatic updates via internet, distributed ~ weekly

Climate

- 1,020 US TMY3 locations
- 8,000 global locations
- User can create and import

Module Database

Download Free Demo Software

Free demo software of both PV*SOL and T*SOL are available at:

www.valentin-software.com

Thank You for Your Attention

Standalone System in Nepal Designed by PV*SOL